X = lhsdesign( n , p ) returns a Latin hypercube sample matrix of size n -by- p . For each column of X , the n values are randomly distributed with one from each interval (0,1/n) , (1/n,2/n) , . (1 - 1/n,1) , and randomly permuted.
X = lhsdesign( n , p , Name,Value ) modifies the resulting design using one or more name-value pair arguments. For example, you can obtain a discrete design by specifying 'Smooth','off' .
Create a Latin hypercube sample of 10 rows and 4 columns.
rng default % For reproducibility X = lhsdesign(10,4)
X = 10×4 0.1893 0.2569 0.0147 0.5583 0.8038 0.1089 0.9378 0.1950 0.5995 0.6818 0.3649 0.3097 0.3225 0.8736 0.4487 0.8055 0.9183 0.9854 0.1598 0.2509 0.0131 0.3864 0.5924 0.7511 0.7916 0.7131 0.2760 0.6662 0.6600 0.5420 0.6877 0.9100 0.2740 0.0450 0.7816 0.0631 0.4200 0.4855 0.8760 0.4889
Each column of X contains one random number in each interval [0,0.1] , [0.1,0.2] , [0.2,0.3] , [0.3,0.4] , [0.4,0.5] , [0.5,0.6] , [0.6,0.7] , [0.7,0.8] , [0.8,0.9] , and [0.9,1] .
Determine the effects of various name-value pair arguments in lhsdesign . Start with a default design for 10 rows and four columns.
rng default % For reproducibility X = lhsdesign(10,4)
X = 10×4 0.1893 0.2569 0.0147 0.5583 0.8038 0.1089 0.9378 0.1950 0.5995 0.6818 0.3649 0.3097 0.3225 0.8736 0.4487 0.8055 0.9183 0.9854 0.1598 0.2509 0.0131 0.3864 0.5924 0.7511 0.7916 0.7131 0.2760 0.6662 0.6600 0.5420 0.6877 0.9100 0.2740 0.0450 0.7816 0.0631 0.4200 0.4855 0.8760 0.4889
To obtain a discrete design, as opposed to a continuous design, set the 'Smooth' name-value pair argument to 'off' .
rng default % For reproducibility X = lhsdesign(10,4,'Smooth','off')
X = 10×4 0.2500 0.3500 0.7500 0.8500 0.1500 0.8500 0.2500 0.3500 0.8500 0.7500 0.4500 0.7500 0.9500 0.1500 0.6500 0.1500 0.0500 0.0500 0.8500 0.9500 0.4500 0.5500 0.9500 0.4500 0.3500 0.9500 0.5500 0.0500 0.5500 0.4500 0.0500 0.2500 0.6500 0.6500 0.1500 0.6500 0.7500 0.2500 0.3500 0.5500
The resulting design is discrete.
Calculate the sum of squares of the between-column correlations of the returned design.
y = corr(X); (sum(y(:).^2) - 4)/2 % Subtract 4 to remove the diagonal terms of corr(X)
ans = 0.4874
Observe the effect of changing the 'Criterion' name-value pair argument to 'correlation' , which minimizes the sum of between-column squared correlations. The 'correlation' criterion always gives a discrete design, as if 'Smooth' is set to 'off' .
rng default % For reproducibility X = lhsdesign(10,4,'Criterion','correlation')
X = 10×4 0.6500 0.0500 0.4500 0.7500 0.2500 0.3500 0.0500 0.1500 0.1500 0.9500 0.8500 0.4500 0.8500 0.5500 0.9500 0.0500 0.5500 0.2500 0.5500 0.3500 0.3500 0.4500 0.7500 0.8500 0.4500 0.1500 0.6500 0.6500 0.0500 0.6500 0.2500 0.5500 0.9500 0.8500 0.3500 0.9500 0.7500 0.7500 0.1500 0.2500
y = corr(X); (sum(y(:).^2) - 4)/2
ans = 0.0102
Minimizing the correlations results in a design with much lower sum of squared correlations.
Specify fewer iterations to improve the criterion.
rng default % For reproducibility X = lhsdesign(10,4,'Criterion','correlation','Iterations',2)
X = 10×4 0.6500 0.0500 0.4500 0.7500 0.3500 0.3500 0.0500 0.1500 0.1500 0.9500 0.8500 0.4500 0.9500 0.5500 0.9500 0.0500 0.5500 0.2500 0.5500 0.3500 0.2500 0.4500 0.7500 0.8500 0.4500 0.1500 0.6500 0.6500 0.0500 0.6500 0.2500 0.5500 0.8500 0.8500 0.3500 0.9500 0.7500 0.7500 0.1500 0.2500
y = corr(X); (sum(y(:).^2) - 4)/2
ans = 0.0328
Lowering the number of iterations results in a worse design (higher sum of squared correlations).
Number of returned samples, specified as a positive integer.
Example: 24
Data Types: single | double
Number of returned variables, specified as a positive integer.
Example: 4
Data Types: single | double
Specify optional pairs of arguments as Name1=Value1. NameN=ValueN , where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: X = lhsdesign(n,p,'Smooth','off') returns a discrete Latin hypercube design
Indication for continuous samples, specified as the comma-separated pair consisting of 'Smooth' and 'on' (continuous samples) or 'off' (discrete samples). When this option is 'off' , the returned values in each column of X are a random permutation of the values 0.5/n , 1.5/n , …, 1 – 0.5/n .
Example: 'Smooth','off'
Data Types: char | string